Schur Complements and Determinant Inequalities

نویسنده

  • YAN ZI-ZONG
چکیده

This paper is focused on the applications of Schur complements to determinant inequalities. It presents a monotonic characterization of Schur complements in the L öwner partial ordering sense such that a new proof of the Hadamard-Fischer-Koteljanski inequality is obtained. Meanwhile, it presents matrix identities and determinant inequalities involving positive semidefinite matrices and extends the Hua Loo-keng determinant inequality by the technique of Schur complements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some inequalities involving determinants, eigenvalues, and Schur complements in Euclidean Jordan algebras

In this paper, using Schur complements, we prove various inequalities in Euclidean Jordan algebras. Specifically, we study analogues of the inequalities of Fischer, Hadamard, Bergstrom, Oppenheim, and other inequalities related to determinants, eigenvalues, and Schur complements.

متن کامل

Hua’s Matrix Equality and Schur Complements

The purpose of this paper is to revisit Hua’s matrix equality (and inequality) through the Schur complement. We present Hua’s original proof and two new proofs with some extensions of Hua’s matrix equality and inequalities. The new proofs use a result concerning Schur complements and a generalization of Sylvester’s law of inertia, each of which is useful in its own right.

متن کامل

Some inequalities on generalized Schur complements

This paper presents some inequalities on generalized Schur complements. Let A be an n n (Hermitian) positive semide®nite matrix. Denote by A=a the generalized Schur complement of a principal submatrix indexed by a set a in A. Let A‡ be the Moore± Penrose inverse of A and k…A† be the eigenvalue vector of A. The main results of this paper are: 1. k…A‡…a0††P k……A=a†‡†, where a0 is the complement o...

متن کامل

The disc separation and the eigenvalue distribution of the Schur complement of nonstrictly diagonally dominant matrices

The result on the Geršgorin disc separation from the origin for strictly diagonally dominant matrices and their Schur complements in (Liu and Zhang in SIAM J. Matrix Anal. Appl. 27(3):665-674, 2005) is extended to nonstrictly diagonally dominant matrices and their Schur complements, showing that under some conditions the separation of the Schur complement of a nonstrictly diagonally dominant ma...

متن کامل

Matrix Inequalities by Means of Block Matrices 1

One of the most useful tools for deriving matrix inequalities is to utilize block matrices; usually they are 2× 2 in most applications. In this paper, we shall show a weak log-majorization inequality of singular values for partitioned positive semidefinite matrices, from which some classical and recent results of Bhatia and Kittaneh [4], Wang, Xi and Zhang [12], and Zhan [13] will follow. We sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009